If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+56X-204=0
a = 1; b = 56; c = -204;
Δ = b2-4ac
Δ = 562-4·1·(-204)
Δ = 3952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3952}=\sqrt{16*247}=\sqrt{16}*\sqrt{247}=4\sqrt{247}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-4\sqrt{247}}{2*1}=\frac{-56-4\sqrt{247}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+4\sqrt{247}}{2*1}=\frac{-56+4\sqrt{247}}{2} $
| 8t+6=62 | | (7y-12)+(5y+12)=180 | | 2n^2-8n-2040=0 | | ∑26n=0(−1)n2n | | 2(5s-2)-3(2s+7)=200s-2377 | | 4(3n-2)-5(5n+2)=3n-82 | | 61=6t-5t^2 | | 13-5(3-2q)=48 | | +4(2w-1)+5(3w-4)=22 | | 7x2-21x-70=0 | | 3x^2+30x+84=0 | | 4(3n-5)+5(5n+2)=4n+188 | | 4(3n-5)+5n+2)=4n+188 | | 4(2m+2)+5(3m-5)=190 | | -4/5+1/3x=2/7 | | 4(2w-1)+5(3w-4)=22 | | 3x-6=5x-11 | | 5x+4/2=9.5 | | 7x2+35=0 | | 26x-6=4 | | y=3+2*4-(-5)*18/(1/3) | | 8c-72=(12c-72-4c | | 12n−5n+3n−8n−n=15 | | 2.5X^3-3.5x^2+3.5x=1 | | 40+(x+10)+(x+30)=360 | | 75/100*x=40 | | 40(x+10)+(x-30)=360 | | 0+m=-8 | | x^2+35x+285=0 | | M-n=-4 | | 6-m=32 | | 0.75*x=40 |